Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(16): 7032-7044, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602351

RESUMO

High-elevation mountains have experienced disproportionately rapid warming, yet the effect of warming on the lateral export of terrestrial carbon to rivers remains poorly explored and understood in these regions. Here, we present a long-term data set of dissolved inorganic carbon (DIC) and a more detailed, short-term data set of DIC, δ13CDIC, and organic carbon from two major rivers of the Qinghai-Tibetan Plateau, the Jinsha River (JSR) and the Yalong River (YLR). In the higher-elevation JSR with ∼51% continuous permafrost coverage, warming (>3 °C) and increasing precipitation coincided with substantially increased DIC concentrations by 35% and fluxes by 110%. In the lower-elevation YLR with ∼14% continuous permafrost, such increases did not occur despite a comparable extent of warming. Riverine concentrations of dissolved and particulate organic carbon increased with discharge (mobilization) in both rivers. In the JSR, DIC concentrations transitioned from dilution (decreasing concentration with discharge) in earlier, colder years to chemostasis (relatively constant concentration) in later, warmer years. This changing pattern, together with lighter δ13CDIC under high discharge, suggests that permafrost thawing boosts DIC production and export via enhancing soil respiration and weathering. These findings reveal the predominant role of warming in altering carbon lateral export by escalating concentrations and fluxes and modifying export patterns.

2.
Science ; 383(6687): 1075-1080, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452079

RESUMO

Uplift and erosion modulate the carbon cycle over geologic timescales by exposing minerals to chemical weathering. However, the erosion sensitivity of mineral weathering remains difficult to quantify. Solute-chemistry datasets from mountain streams in different orogens isolate the impact of erosion on silicate weathering-a carbon dioxide (CO2) sink-and coupled sulfide and carbonate weathering-a CO2 source. Contrasting erosion sensitivities of these reactions produce a CO2-drawdown maximum at erosion rates of ~0.07 millimeters per year. Thus, landscapes with moderate uplift rates bolster Earth's inorganic CO2 sink, whereas more rapid uplift decreases or even reverses CO2 sequestration. This concept of an "erosion optimum" for CO2 drawdown reconciles conflicting views on the impact of mountain building on the carbon cycle and permits estimates of geologic CO2 fluxes dependent upon tectonic changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...